Please contact the authors to report errors not included in the list (sthollow at ncsu dot edu).
Chapter 2
p.38, l.-7.
The sentence should read "Substituting (2.52) and (2.53) in the sandwich variance formula \(\ldots\)" (remove "the inverse of")
Chapter 7
p.289, l.-6.
The first two lines of Equation (7.110) should read
$$
\begin{align*}
&\widehat{\mathcal{V}}_{AIPW}(d_{\eta}) = n^{-1} \sum_{i=1}^{n} \left\{
\frac{\mathcal{C}_{d_{\eta},i}Y_{i}}{\overline{\omega}_{K}(H_{Ki},A_{Ki};
\widehat{\overline{\gamma}}_{K})} \right. \\
&-\left[\frac{ \mathrm{I}\{ A_{1i}=d_{\eta,1}(H_{1i})\} - \omega_1(H_{1i},A_{1i}; \widehat{\gamma}_{1})}
{\omega_1(H_{1i},A_{1i}; \widehat{\gamma}_{1})} \right]
Q_{1}^{{d_{\eta}}}\{H_{1i},d_{\eta,1}(H_{1i}); \widehat{\beta}_{1}\}
\end {align*}
$$
(in the second term, change \(\omega_k(H_{1i},A_{1i}; \widehat{\gamma}_{1})\) to
\(\omega_1(H_{1i},A_{1i}; \widehat{\gamma}_{1})\) in the numerator and denominator)