
Clarification: Model Specification and Estimation with Feasible Sets

In Chapters 6 and 7, we discuss considerations for the specification of outcome regression models and
propensity models at each of theK decision points when interest focuses on a particular choice of feasible
sets Ψ = (Ψ1, . . . ,ΨK) and for estimation of the value of a fixed regime and of an optimal regime in the
class of Ψ-specific treatment regimes. As in Section 6.2.2, for k = 1, . . . ,K, Ψk(hk) ⊆ Ak comprises the
options in Ak that are feasible for an individual with history hk. A feasible set Ψk(hk) might contain all
options in Ak or a subset of the options in Ak; as in the ADHD example on page 218, the subset might
comprise a single option in Ak.

The discussions of modeling and estimation considerations in Chapters 6 and 7 are relevant under certain
conditions regarding the nature of the observed data. Here, we present clarification of these conditions
and describe how the developments should be modified if these conditions are not met. The R pack-
age DynTxRegime implements estimation of an optimal Ψ-specific regime correctly in either case and
requires that the user understand the form of the observed data to specify implementation of the desired
estimation method.

Observed Data Scenarios

Assume interest focuses on a choice of feasible sets Ψ. As is discussed in Section 6.2.2, specification
of Ψ is based ideally on scientific considerations. With this in mind, we distinguish two observed-data
scenarios:

(i) At each decision point k, k = 1, . . . ,K, individuals in the observed data with history hk received only
treatment options contained in Ψk(hk). This condition would be satisfied by default for observed
data from a SMART focused on evaluation of Ψ-specific regimes in which subjects were randomized
to the options in Ψk(hk) based on their histories hk. This condition would also be satisfied for
observational data when the choice of Ψ reflects conventions in practice that dictate that patients
with certain characteristics represented in their histories hk would never receive treatment options
not included in Ψk(hk) at any decision point k; e.g., if a treatment option would never be administered
to an individual with certain characteristics on ethical or scientific grounds, as in the acute leukemia
example, where salvage therapy would never be administered to a patient who had responded to
induction therapy.

In general, this condition would be satisfied if Ψ were chosen to be the “largest” specification Ψmax

discussed at the end of Section 6.2.4. By definition, Ψmax(hk) includes all options received by
individuals with history hk in the observed data. When the available data are observational, it is
common in practice to take Ψ = Ψmax, so that Ψk(hk) and Ψmax(hk) coincide for all k = 1, . . . ,K.

(ii) At at least one decision point k, k = 1, . . . ,K, there may be individuals in the observed data with
history hk who received treatment options not contained in Ψk(hk). This scenario is exemplified by
the Remark on page 193 of Section 6.2.2 in the context of HIV treatment. Here, Ψk(hk) is chosen
based on the scientific premise that patients whose hk indicates that the virus has become resistant
to antiretroviral therapy should never continue to receive it because therapy is pointless and in fact
detrimental when the virus is resistant. However, there may be patients with hk indicating resistance



who insist on receiving therapy nonetheless.

More generally, there may be circumstances in which feasible sets may be deliberately chosen to
restrict the feasible options for certain histories hk; e.g., reflecting interest in regimes to be used
in resource-limited settings where certain options in Ak would not be available. However, these
options may have been administered to individuals with these histories in the observed data on
which estimation is to be based.

Formally, under Scenario (ii), the specification of feasible sets Ψ chosen by the analyst is a strict
subset of Ψmax; that is, for at least one k, k = 1, . . . ,K, Ψk(hk) is a strict subset of Ψmax

k (hk),
Ψk(hk) ⊂ Ψmax

k (hk), for some hk. Write this succinctly as Ψ ⊂ Ψmax.

In Chapters 6 and 7, the discussions of model specification and estimation of a fixed Ψ-specific regime
and of an optimal Ψ-specific regime tacitly assume that the observed data are consistent with Scenario (i).
Thus, the presentation in each of the portions of the book indicated below is relevant under this condition
but may not be relevant if the data are consistent with Scenario (ii).

Modifications Under Scenario (ii)

When the observed data are consistent with Scenario (ii), the modeling and estimation considerations in
the following sections of the book must be modified.

(a) Section 6.4.2, implementation of the Backward Induction Approach to estimation of a fixed Ψ-specific
regime

(b) Section 6.4.3, Considerations for Propensity Modeling

(c) Section 7.4.1, Modeling and Implementation Considerations for Q-learning

(d) Section 7.4.2, Modeling and Implementation Considerations for A-learning

(e) Section 7.4.3, Value Search Estimation

We now describe in detail how modeling and estimation (e.g., implemented using DynTxRegime) would
proceed in practice under Scenario (ii). Suppose interest focuses on a specification of feasible sets
Ψ ⊂ Ψmax, and, for k = 1, . . . ,K, Ak comprises mk options. In what follows, we define as in the book `k
to be the number of distinct subsets Ak,l ⊆ Ak, l = 1, . . . , `k, that are feasible sets at Decision k under Ψ;
sk(hk) to take on values 1, . . . , `k according to which of these subsets Ψk(hk) corresponds for given hk,
and Mk(hk) to denote the number of options in Ψk(hk). The distinct subsets Ak,l comprise mkl options,
1 ≤ mk,l ≤ mk, l = 1, . . . , `k.

Regression Modeling. First consider the backward induction approach to estimation of the value of a
fixed Ψ-specific regime in (a) and the method of Q-learning for estimation of an optimal Ψ-specific regime
in (c). The discussion here focuses on Q-learning in (c), but the same considerations apply to (a).

As discussed in (c), a practical approach is to posit `k separate models Qk,l(hk, ak;βk,l), l = 1, . . . , `k, for
each subset, to arrive at an overall model as in (7.68) (equivalently (6.71) for (a)). With the parameters
βk,l sharing no common components across l = 1, . . . , `k (i.e., βk,l are variationally independent), each



model can be fitted separately to the observed data from individuals with sk(hk) = l and used to form
pseudo outcomes as discussed in (c).

At Decision k, suppose Ψk(hk) for a given hk contains Mk(hk) options; equivalently, the distinct subset
Ak,l to which Ψk(hk) corresponds has mk,l options. However, in the observed data, there are individuals
who received treatment options other than these Mk(hk)/mk,l options. We distinguish two cases:

• Mk(hk) > 1; equivalently mk,l > 1. Here, as above, the analyst would posit a regression model
Qk,l(hk, ak;βk,l), where ak can take on values corresponding to all treatments received in the ob-
served data. The model would be fitted to the data on all individuals with sk(hk) = l, including the
individuals receiving treatment options other than those in Ψk(hk). The fitted model would be used
to obtain pseudo outcomes as described in (c).

• Mk(hk) = 1; equivalently, mk,l = 1 . Under Scenario (i), as described in (c), no model would be
posited and fitted, and the outcome (k = K) or pseudo outcome Ṽk,i would be carried backward to
Decision k − 1. Under Scenario (ii), this is inappropriate, as this outcome or pseudo outcome for
individuals with this hk who received a treatment option not in Ψk(hk) will be inconsistent with having
received the single option in Ψk(hk).

Accordingly, instead, the analyst should posit a regression model Qk,l(hk, ak;βk,l), where ak can
take on values corresponding to all treatments received in the observed data. The model would
be fitted to the data on all individuals with sk(hk) = l, including the individuals receiving treatment
options other than that in Ψk(hk). The fitted model would be used to obtain pseudo outcomes.

Propensity Modeling. Now consider propensity modeling used in estimation of the value of a fixed
regime via an inverse probability weighted or augmented inverse probability weighted estimator as in (b)
and estimation of an optimal Ψ-specific restricted regime using value search estimation based on either
type of estimator in (e). The following considerations also apply to any method based on inverse weighting
by propensity models.

As discussed in (b) and (e), a practical approach is to posit `k separate propensity models ωk,l(hk, ak; γk,l),
l = 1, . . . , `k, as in (6.105) and (7.93) for each subset to arrive at an overall model as in (6.106). The mod-
els ωk,l(hk, ak; γk,l) may be logistic or multinomial (polytomous) logistic regression models, as discussed
momentarily. With the parameters γk,l sharing no common components across l = 1, . . . , `k (i.e., γk,l are
variationally independent), each model can be fitted separately by maximum likelihood to the observed
data from individuals with sk(hk) = l.

At Decision k, suppose Ψk(hk) for a given hk contains Mk(hk) options; equivalently, the distinct subset
Ak,l to which Ψk(hk) corresponds has mk,l options. However, in the observed data, there are individuals
who received treatment options other than these Mk(hk)/mk,l options. We distinguish three cases:

• Mk(hk) = 2; equivalently, mk,l = 2. Under Scenario (i), as above, one would posit and fit a lo-
gistic regression model ωk,l(hk, ak; γk,l) for the Mk(hk) = 2 treatment options. If, as here, there
are individuals who received one or more options not contained in Ψk(hk), one would instead take
ωk,l(hk, ak; γk,l) to be a multinomial (polytomous) logistic regression model for the total number of
treatment options (> 2) received by individuals with sk(hk) = l in the observed data, including the
options not in Ψk(hk). The model would be fitted to the data on all of the individuals with sk(hk) = l.



• Mk(hk) > 2; equivalently, mk.l > 2. Under Scenario (i), one would posit and fit a multinomial (poly-
tomous) logistic regression ωk,l(hk, ak; γk,l) for the Mk(hk) > 2 treatment options. If, as here, there
are individuals who received one or more options not contained in Ψk(hk), one would instead take
ωk,l(hk, ak; γk,l) to be a multinomial (polytomous) logistic regression model for the total number of
treatment options (> Mk(hk)) received by individuals with sk(hk) = l in the observed data, includ-
ing the options not in Ψk(hk). The model would be fitted to the data on all of the individuals with
sk(hk) = l.

• Mk(hk) = 1; equivalently, mk,l = 1. Under Scenario (i), as described in (b) and (e), the propensity
for the single option in Ψk(hk) is set equal to 1. Under Scenario (ii), this is inappropriate, as the
probability of receiving this single option under the observed data treatment assignment mechanism
is < 1.

Accordingly, the analyst should posit and fit a logistic or multinomial (polytomous) logistic regression
model ωk,l(hk, ak; γk,l) as appropriate for the total number of treatment options (> 1) received by
individuals with sk(hk) = l in the observed data, including the options not in Ψk(hk). The model
would be fitted to the data on all of the individuals with sk(hk) = l.

For A-learning in (d), under Scenario (ii), the propensity models should be developed according to these
considerations. In addition, under Scenario (ii), the contrast function models should be developed in
a manner analogous to that for Q-function models in (a) and (c) above. In particular, if Mk(hk) = 1

or equivalently mk,l = 1, but there are individuals in the observed data with sk(hk) = l who received
treatment options different from the one in Ψ(hk)/Ak,l, a contrast function model should be posited and
fitted based on the data from all such individuals and used to construct pseudo outcomes rather than
“carrying backward” pseudo outcomes as described in (d) under Scenario (i).

Implementation in Practice

The foregoing considerations dictate that it is incumbent on a data analyst interested in a particular choice
of feasible sets Ψ = (Ψ1, . . . ,ΨK) and the class of Ψ-specific treatment regimes to scrutinize the observed
data and determine which of Scenario (i) or (ii) is relevant. This exercise will inform the analyst in advance
of the need to posit suitable models to be fitted to the data on subjects whose histories are consistent with
each feasible set.

In DynTxRegime, under Scenario (i), the analyst should specify models for each feasible set with at least
two treatment options. Under Scenario (ii), a model should be specified for each feasible set for which
individuals in the data whose histories are consistent with the feasible set are observed to have received
more than one option, even if the feasible set itself comprises only one option. Under either scenario, the
models should be specified according to the to the guidelines given above.

DynTxRegime makes every effort to identify possible issues between the models specified for an analysis
and the data provided. Specifically, for outcome regression modeling:

(i) For Mk(hk) > 1, if individuals with sk(hk) = l received treatment options other than those in Ψk(hk)

a message is generated. This message is informative only and does not stop the analysis.



(ii) For Mk(hk) = 1, if individuals with sk(hk) = l received treatment options other than those in Ψk(hk)

execution is halted with an error message indicating that a model must be provided for individuals
with sk(hk) = l.

And for propensity regression modeling:

(i) For Mk(hk) ≥ 2, if individuals with sk(hk) = l received treatment options other than those in Ψk(hk)

a message is generated. This message is informative only and does not stop the analysis. Note
that the modeling object framework makes it difficult if not impossible to determine in general if a
model is a logistic regression or a multinomial regression. Therefore, the scenario where a logistic
regression is provided but a multinomial is required does not result in an information proactive stop
but will result in a message and likely a regression error.

(ii) For Mk(hk) = 1, if individuals with sk(hk) = l received treatment options other than those in Ψk(hk)

execution is halted with an error message indicating that a model must be provided for individuals
with sk(hk) = l.


